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Abstract—In this paper, we present a system of coupled partial
differential equations (PDE) that model one dimensional tumour
metastasis based on the concentrations of: tumour cell density,
extracellular matrix (ECM), and degradation enzymes. Our
numerical implementation suggests that in the case of a resected
tumour that regression occurs in a site away from the primary
tumour. Overall, our model suggests that tumour invasion is
dependant on the permeability of the ECM and secretion rate
of degradation enzymes. This system of coupled PDEs is a good
avenue to investigate tumour metastasis.

I. INTRODUCTION

A. The Clinical Context of Cancer

Cancer is a rapidly progressing disease that affects many
people, and one of they main ways that cancer is able to
spread throughout the body is through metastasis. In fact,
one of the ways that healthcare professionals characterize
malignant tumours is by its ability to metastasize. Thus, it is
clear that metastasis is an interesting biomedical phenomena
since it describes how cancer spreads throughout our body.
The transport of tumour cells throughout the body is very
complex since we are taking into consideration the effect of
several bodily systems, such as circulatory, immunological
and even lymphatic. Not only is this particular phenomena
interesting, but it is incredibly important to model since being
able to predict the tumour invasion distance can let physicians
decide early preemptive treatment plans or give insight to post-
operative tumour resection cases. A model that describes the
movement of tumours in a body can significantly aid physi-
cians when treating cancer patients in a number of ways. Refer
to Figure 1 for a rough timeline of the evolutionary process
of normal tissue to an invasive carcinoma. Tumour models
of growth have well have been well established in literature,
moreover, many models attempting to describe tumour growth
are closely based on cell population dynamics.

Figure 1: Progressive stages of the evolution of cancer in
bloodstream over from early normal tissue (Left) to late stage
aggressive cancer (Right)

Thus, there exists a need for a quantitative approach to
modelling tumour cell transport in the body during cancer
metastasis.

B. Considering Physiological Factors in Model

In order to understand what mathematical components we
must include in our model, we must first look at the actual
biological phenomena that occurs during tumour metastasis.
As we have shown in the previous section, once a tumour be-
comes an invasive carcinoma it begins to metastasis. As shown
in Figure 2, the multiple stages of metastatic dissemination
follow a general pattern of transport through blood vessels;
although this is mainly seen in solid tumours and not cancers
like lymphoma or leukemia.

Figure 2: Cartoon describing multiple stages of metastatic
dissemnination of cancer cells, figure adapted from Saxena
et Al [1]

The key stages of the tumour metastasis are:
1) Deterioration of local tissue and extracellular matrix
2) Local invasion of tumour cells from primary tumour to

blood vessel
3) Intravasation of cells into blood stream
4) Cell transport through blood vessel
5) Extravasation of cells out of bloodsteam to new tumour

site
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6) Tumour angiogensis and proliferation
In order for the tumour to penetrate the extracellular ma-
trix (ECM) it secretes proteolytic degradation enzymes that
deteriorate the surrounding tissue [2]. Once the tumour has
broken through the ECM, it begins to randomly diffuse into the
ECM as well move up a gradient of chemoattractant cytokines
[3]. These chemokines are an important family of proteins
that induce motility in tumour cells. Thus, we can note that
tumour cell migration occurs through two main modalities:
diffusion and hapatotaxis. Additionally, we can also note that
the concentration of ECM and the degradation enzymes play
an important role in tumour transport.

C. Development of Mathematical Model

Consider Figure 3 for high level overview of the mathemat-
ical model

Figure 3: Simple line diagram showing flow of tumour trans-
port with associated transport equation and notation

Let u(x, t) be the concentration of tumour cell density,
m(x, t) be the concentration of the ECM, and δ(x, t) be the
concentration of degradation enzymes. We will not consider
the effects of cell proliferation and apoptosis in our model. We
can describe the movement of tumour cells into the ECM using
the diffusive flux and hapatotaxic flux. We will assume that the
cytokinetic chemoattractants are embedded within the ECM.
Lastly, we assume that the degradation rate follows simple
diffusion and first order chemical kinetics.

II. METHODS

We can begin developing our model by considering the
continuity equation for the total tumour cell density. We expect
that to see that total tumour cell density is conserved and thus
can assume a 0 control volume term.

∂u

∂t
+∇ · (JD + JH) = 0

We can use Fick’s first law to expand the diffusive flux
term and we can use the Keller-Segel Model to describe the
hapataxic flux [4], [5].

∂u

∂t
= D∇2u− ζ∇ · (u∇m)

Where D is the diffusion constant for tumour cells and ζ
is the hapatotaxis constant describing rate of diffusion and
chemoattraction respectively.

We can also formulate equations for the ECM and degra-
dation enzymes concentration by using the aforementioned
assumptions.

∂m

∂t
= −δm

∂δ

∂t
= Dδ∇2δ + k+u− k−δ

Where Dδ is the diffusion constant for the degradation
enzymes, k+ is the rate of production, and k− is the rate of
decay. Combining all these equation we can write a coupled
system of partial differential equations (PDEs).

∂u

∂t
= D∇2u− ζ∇ · (u∇m) (1)

∂m

∂t
= −δm (2)

∂δ

∂t
= Dδ∇2δ + k+u− k−δ (3)

We will state zero flux boundary conditions as we want to
observe the model in a closed system. We will further state
that there is initially no degradation enzymes in the system.
Lastly, we will state that the tumour is initially isolated and
follows an exponential decay for its spread [5]. Moreover we
will also normalize all of our units into dimensionless groups,
thereby constraining distance and concentration on the interval
[0, 1].

−D∇u+ ζ(u∇m) = 0

−Dδ∇δ = 0

δ(x, 0) = 0

u(x, 0) =

{
e−αx

2

0 ≤ x ≤ 0.25

0 0 ≥ 0.25

Refer to Table I for the list of biologically relevant param-
eter values that were used to normalize and solve the model.

Table I: Table of parameter values available from existing
literature

Term Description Value Unit Sources
D Diffusion coefficient of tumour

cells
10E-9 cm2s−1- [6]

Dδ Diffusion coefficient of degra-
dation enzyme

10E-9 cm2s−1 [5]

ζ Haptotaxis coefficient towards
ECM

2600 cm2

M·s [6]

α Rate constant for initial spread
of tumour

1000 s−1 [6]

L Characteristic length scale 1 cm [6]
τ Characteristic time scale 20 hour [6]
Dref Reference diffusion coefficient 10E-6 cm2s−1 [6]
k+ Rate constant for production of

ECM
0.15 s−1 [7]

k− Rate constant for decay of
degradation enzyme

0.001 s−1 [5]

Solving systems of coupled PDEs is not in the scope of
BMEG 371 and, as such, we can not confidently describe
the analytical solution. However, we will use MATLAB to
solve the system numerically and show plots of the predicted
solutions instead.
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III. RESULTS

We will simulate the tumour transport of cells in a situation
where a surgeon has removed 90% of the original tumour
mass. In this scenario, we state that roughly 10% tumour
mass is still left and continues to be aggressive. This is a
common situation in many post-operative tumour removal
surgical cases.

(a) t=1 (b) t=10

(c) t=25 (d) t=40

Figure 4: Plots of concentration profile of tumour cells, ECM,
and degradation enzymes over t=40 time steps for resected
tumour situation.

Moreover, we can observe the macroscopic trends of tumour
transport by looking at the surface plots specifically of the
tumour cell density and the ECM.

(a) (b)

Figure 5: Surface plot of resected tumour cells (a) and of ECM
in resected environment (b)

IV. DISCUSSION

As shown in Figure 5, we can see the general trends that
occur in the system over the total time. Namely, we can
notice in Figure 5a that initially the small primary tumour
spends time to proliferate locally and degrade the surrounding
ECM prior to migrating. This can also be seen in Figure 4b,
where there is a rapid decrease in concentration of the ECM

which allows an increase in tumour cell density. Our model
suggests that the tumour will secrete degradation enzymes to
permeabilize the ECM prior to cell migration. This suggestion
is further corroborated by Figure 5b by its steep and rapid
decay. This rapid decay of the ECM, as shown in Figure 5b and
Figure 4, follows the expect behaviour of biological tumours.
Additionally, our model highlights degradation enzymes as a
potential target for drug development as inhibiting degradation
enzyme expression could diminish tumour migration.

Furthermore, Figure 4d seems to suggest that the primary
and secondary tumour sites might not necessarily form within
close distance of one another. This has some clinical insight
as it could possibly provide further explanation as to why
clinicians see tumour formation in other areas than the primary
tumour site. Being able to predict how far away the secondary
site is from the primary site can allow an opportunity for
preemptive therapy.

In order to assess the biological fidelty of the mathematical
model with the actual reality of tumour metastasis, we will
consider a study conducted by Yong et Al [8]. This study
measures the invasion distance of two pancreatic cancer cell
lines (PC3 and DU145) [8] by culturing tumour spheroids;
after normalizing the data from Yong et Al, we found that
our tumour model was progressing at a rate slower than what
was actually observed. This suggests that our tumour model
is lacking in regards to its biological accuracy.

There are several limitations of this tumour transport model
that contribute to reason why the model is not accurate with
biological findings. The tumour was considered in a close
system and did not consider cell proliferation and apoptosis
which means that external factors, such as the immunological
response of the body, are not considered. Moreover, in this
model we generalize all degradation enzymes as matrix met-
alloproteinases which does not incorporate tumour specificity.
Lastly, we do not consider the heterogeneity of the tumour
micro environment, which is a recent discovery that has
changed our outlook on cancer [9].

In regards to future investigation, we think it could be
interesting to introduce advection as a term in the model.
The blood flow rate could be an important factor during
extravasation. Moreover, introducing equations that govern
immunological responses are crucial to increasing the fidelity
of the model. Lastly, exploring possible one dimensional in
vitro tumour cultures could provide further validation of our
model.

V. CONCLUSION

We have determined that tumour invasion is dependant on
the permeability of ECM and secretion rate of degradation
enzymes. The model gives an approximate lower bound for
aggressive metastatic tumour invasion showing characteristic
features of metastasis. This has demonstrated that this system
of coupled PDEs is a good avenue to investigate the math
model of tumour metastasis
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